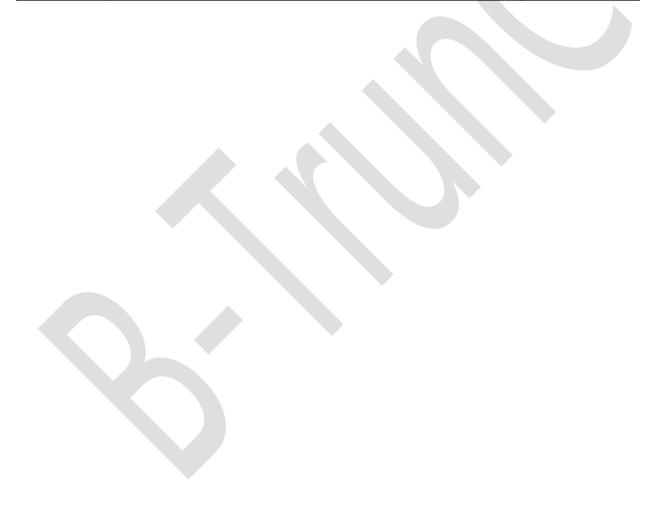
B-TrunC TM 02.001.02 V 3.0

基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 空中接口 第2部分: 宽带数据


Test method for air interface of LTE based broadband trunking communication (B-TrunC) system (Phase 2) part 2: broadband data

2023年9月

版本修订记录

版本	主要修订内容	日期
1.0	网站发布版本1.0	
1.0.71	按照T71-22r2修改	2019/6/22
1.0.72	按照T72-19号文稿修改	2019/7/27
2.0	升级为2.0,无改动	2019/8
2.0.87	联盟版本统一	2021/3
3.0	联盟版本统一	2023/9

1

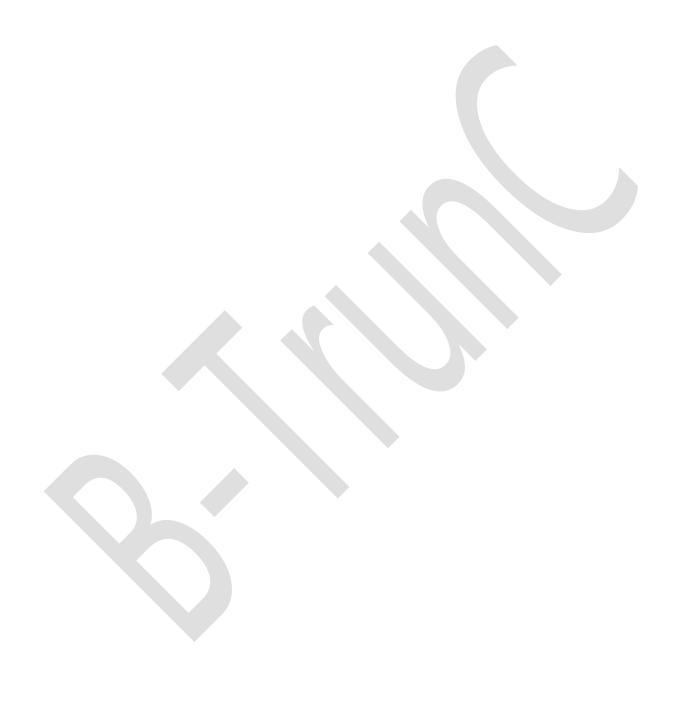
前言

本标准是由宽带集群产业联盟制定的基于 LTE 技术的宽带集群通信(B-TrunC)系统(第二阶段)系列标准之一,该系列标准的结构和名称如下:

- 1) B-TrunC TS 02.001 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)总体技术要求
- 2) B-TrunC TS 02.002 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)端到端流程
- 3) B-TrunC TS 02.003 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)安全技术要求
- 4) B-TrunC TS 02.004 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口技术要求 空中接口
- 5) B-TrunC TS 02.005 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口技术要求 终端到核心网接口
- 6) B-TrunC TS 02.006 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口技术要求基站与核心网间接口
- 7) B-TrunC TS 02.007 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口技术要求 核心网间接口
- 8) B-TrunC TS 02.008 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口技术要求 核心网到调度台接口
- 9) B-TrunC TS 02.009 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)终端设备技术 要求
- 10) B-TrunC TS 02.010 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)基站设备技术要求
- 11) B-TrunC TS 02. 011 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)核心网设备技术要求
- 12) B-TrunC TS 02. 012 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)调度台设备技术要求
- 13) B-TrunC TS 02. 013 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)多媒体消息业务技术要求
- 14) B-TrunC TS 02. 014 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)定位业务技术要求
- 15) B-TrunC TS 02.015 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)B-TrunC与非B-TrunC集群系统间互联互通技术要求
- 16) B-TrunC TM 02.001.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 空中接口 第1部分:集群
- 17) B-TrunC TM 02.001.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 空中接口 第2部分: 宽带数据
- 18) B-TrunC TM 02.002.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 终端到核心网接口 第1部分:集群
- 19) B-TrunC TM 02.002.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 终端到核心网接口 第2部分: 宽带数据
- 20) B-TrunC TM 02.003.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 基站与核心网间接口 第1部分:集群

21) B-TrunC TM 02.003.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 基站与核心网间接口 第2部分:宽带数据

- 22) B-TrunC TM 02.004.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 核心网间接口 第1部分:集群
- 23) B-TrunC TM 02.004.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 核心网间接口 第2部分:宽带数据
- 24) B-TrunC TM 02.005 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法核心网到调度台接口
- 25) B-TrunC TM 02.006.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)终端设备测试方法 第1部分:集群
- 26) B-TrunC TM 02.006.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)终端设备测试方法 第2部分: 宽带数据
- 27) B-TrunC TM 02.007.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)基站设备测试方法 第1部分:集群
- 28) B-TrunC TM 02.007.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)基站设备 测试方法 第2部分: 宽带数据
- 29) B-TrunC TM 02.008.01 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)核心网设备测试方法 第1部分:集群
- 30) B-TrunC TM 02.008.02 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)核心网设备测试方法 第2部分:宽带数据
- 31) B-TrunC TM 02.009 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)调度台设备测试方法
- 32) B-TrunC TM 02.010 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)终端与网络互操作测试方法
- 33) B-TrunC TM 02. 011 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)调度台与网络互操作测试方法
- 34) B-TrunC TM 02. 012 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)多媒体消息业务测试方法
- 35) B-TrunC TM 02. 013 基于LTE技术的宽带集群通信 (B-TrunC) 系统 (第二阶段) 定位业务测试 方法
- 36) B-TrunC TM 02.014 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)B-TrunC与非B-TrunC集群系统间互联互通测试方法
- 37) B-TrunC TM 02.015 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)终端设备射频测试方法
- 38) B-TrunC TM 02. 016 基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)基站设备射频测试方法


随着技术的发展,还将制定后续的相关标准。

本标准按照GB/T 1.1-2009给出的规则起草。本标准由宽带集群产业联盟提出并归口。

本标准起草单位:中国信息通信研究院、鼎桥通信技术有限公司、北京中兴高达通信技术有限公司、海能达通信股份有限公司、普天信息技术有限公司、北京信威通信技术股份有限公司、武汉虹信通信技

术有限责任公司、大唐电信科技产业集团、中兴通讯股份有限公司、华为技术有限公司、首都信息发展股份有限公司

本标准主要起草人: 杜加懂、宋得龙、陈迎、蔡杰、郑伟、李晓华、袁剑、陈钢、吴迪、叶亚娟、梅晓华、崔媛媛、王威、陈金山、张耀匀、李赛男

目 次

版	資本修订记录
前	f 言II
	次v
1	范围1
2	规范性引用文件1
3	缩略语1
4	概述2
	4.1 测试配置
	4.2 测试的前提条件2
5	物理层接口测试2
	5.1 带宽和帧结构2
	5.1.1 1.4MHz 系统带宽(可选)3
	5.1.2 3MHz 系统带宽3
	5.1.3 5MHz 系统带宽4
	5.1.4 10MHz 系统带宽5
	5.1.5 20MHz 系统带宽(仅适用于 1.4GHz 系统)5
	5.1.6 上下行配置 0, 特殊子帧 56
	5.1.7 上下行配置 0, 特殊子帧 77
	5.1.8 上下行配置 1, 特殊子帧 58
	5.1.9 上下行配置 1, 特殊子帧 78
	5.1.10 上下行配置 2, 特殊子帧 5 9
	5.1.11 上下行配置 2, 特殊子帧 710
	5.2 参考信号11
	5.2.1 下行参考信号11
	5. 2. 2 上行 PUSCH 参考信号
	5. 2. 3 上行 PUCCH 参考信号
	5.3 多天线技术测试13
	5.3.1 PDSCH MIMO 传输技术 (模式 1)13
	5.3.2 PDSCH MIMO 传输技术(模式 2)14
	5.3.3 PDSCH MIMO 传输技术(模式 3)14
	5.4 同步和小区搜索
	5.5 随机接入15
	5.5.1 切换时基于非竞争的随机接入15
	5.5.2 切换时基于竞争的随机接入17
6	RRC 协议接口测试18
	6.1 小区选择和重选18
	6.1.1 小区选择18

宽带集群产业联盟

B-TrunC TM 02.001.02

	6.1.2 小区重选	. 19
	6.2 RRC 连接控制	19
	6.2.1 寻呼处于 IDLE 状态的 UE	19
	6.2.2 系统信息改变触发寻呼	. 20
	6.2.3 RRC 连接建立	21
	6.2.4 RRC 连接释放	21
	6.2.5 无线承载 SRB2 建立	. 22
	6.2.6 数据无线承载 (DRB) 建立	. 22
	6.2.7 数据无线承载 (DRB) 释放	. 23
	6.3 终端能力上报	. 23
	6.4 移动性管理	. 24
	6.4.1 S1 接口同频切换,基于竞争	. 24
	6.4.2 S1 接口同频切换,基于非竞争	26
7	安全功能接口测试	
	7.1 AS 层消息安全	28
	7.2 加密和完整性保护算法	
	7.2.1 ZUC 算法	28
	7.2.2 SNOW 3G 算法	
	7.2.3 AES 算法	
	7.3 切换时的安全性	
	7.3.1 S1 切换时的密钥协商	
	7.3.2 S1 切换时的密钥分发	33

基于 LTE 技术的宽带集群通信(B-TrunC)系统(第二阶段)接口测试方法 空中接口 第2部分: 宽带数据

1 范围

本标准规定了基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)空中接口的宽带数据部分测试方法,包括物理层、RRC协议以及安全功能的测试内容。

本标准适用于基于LTE技术的宽带集群通信(B-TrunC)系统(第二阶段)的终端和网络设备的宽带数据部分。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

3 缩略语

下列缩略语适用	于本文件。	
AES	高级加密标准	Advanced Encryption Standard
AS	接入层	Access Stratum
CP	循环前缀	Cyclic Prefix
DCI	下行控制信息	Downlink Control Information
DRB	数据无线承载	Data Radio Bearer
EEA	EPS 加密算法	EPS Encryption Algorithm
EIA	EPS 完整性保护算法	EPS Integrity Algorithm
EMM	EPS 移动性管理	EPS Mobility Management
eNB	基站	Evolved Node B
EPC	核心网	Evolved Packet Core
EPS	演进的分组系统	Evolved Packet System
E-RAB	EPS 无线接入层	EPS Radio Access Bearer
E-UTRAN	演进的接入网	Evolved UTRAN
GUTI	全球唯一临时 UE 标识符	Globally Unique Temporary UE Identity
HSS	归属签约服务器	Home Subscriber Server
MIMO	多发多收	Multiple-Input Multiple-Output
MME	移动性管理实体	Mobility Management Entity

宽带集群产业联盟

NAS	非接入层	Non-access stratum
P-GW	PDN网关	PDN Gateway
PLMN	公众地面移动网络	Public Land Mobile Network
PSS	主同步信号	Primary Synchronization Signal
PUCCH	物理上线控制信道	Physical Uplink Control Channel
PUSCH	物理上行共享信道	Physical Uplink Shared Channel)
RRC	无线资源控制	Radio Resource Control
S-GW	服务网关	Serving Gateway
SIB	系统消息块	System Information Block
SRB	信令无线承载	Signal Radio Bearer
SSS	辅同步信号	Secondary Synchronization Signal
UE	用户设备	User Equipment
UTRAN	通用陆地无线接入网	Universal Terrestrial Radio Access Network
ZUC	祖冲之	Zu Chung Chi

4 概述

4.1 测试配置

空中接口测试环境连接如图1所示。

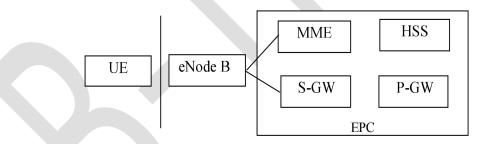


图 1 空中接口测试环境示意

4.2 测试的前提条件

测试前,应满足:

- ——被测设备安装完毕,硬件软件全部工作正常,系统配置数据正确并正常运行;
- ——辅助测试设备硬件软件全部工作正常,已完成各种逻辑数据的正确设置;
- ——辅助测试无线环境正常工作。

5 物理层接口测试

5.1 带宽和帧结构

5.1.1 1.4MHz 系统带宽(可选)

测试项目: 带宽和帧结构

测试分项: 支持 1.4MHz 系统带宽

测试目的:

验证 E-UTRAN 支持 1.4MHz 系统带宽。

测试条件:

eNodeB 和配合测试终端均支持 1.4MHz 系统带宽。

测试步骤:

- 1) 配置 eNodeB 系统带宽为 1.4MHz,选择配置帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);使配置生效,E-UTRAN 小区开始正常工作;
- 2) 用矢量信号分析仪对 eNodeB 的发射信号进行时域分析和频域分析:
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的无线资源块。

预期结果:

- 1) 配置的 1.4MHz 系统带宽小区能正常运行:
- 2) 小区广播的 MasterInformationBlock 中 dl-Bandwidth 参数指示系统的发射带宽配置 N_{BB}为 1.4MHz (即取 n6);
- 3) 时域和频域分析图形正确:
- 4) 测试终端能在该小区正常接入:
- 5) 测试终端能在该小区正常建立数据无线承载;
- 6) 通过对 eNodeB 发射信号的频域分析、eNodeB 给终端调度的资源块的监测等方式,可以验证 eNodeB 能在整个系统带宽内调度终端(调度给同一 UE 或多个 UE)。

5.1.2 3MHz 系统带宽

测试项目: 带宽和帧结构

测试分项: 支持 3MHz 系统带宽

测试目的:

验证 E-UTRAN 和 UE 支持 3MHz 系统带宽。

测试条件:

eNodeB和测试终端均支持 3MHz 系统带宽。

测试步骤:

1) 配置 eNodeB 系统带宽为 3MHz,选择配置帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);使配置生效,E-UTRAN 小区开始正常工作;

- 2) 用矢量信号分析仪对 eNodeB 的发射信号进行时域分析和频域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的无线资源块:
- 5) 如单部测试终端不能占满系统带宽,则同时采用多部终端直至占满系统带宽。

预期结果:

- 1) 配置的 3MHz 系统带宽小区能正常运行;
- 2) 小区广播的 MasterInformationBlock 中 dl-Bandwidth 参数指示系统的发射带宽配置 N_{RB}为 3MHz (即取 n15);
- 3) 时域和频域分析图形正确;
- 4) 测试终端能在该小区正常接入;
- 5) 测试终端能在该小区正常建立数据无线承载;
- 6) 通过对 eNodeB 发射信号的频域分析、eNodeB 给终端调度的资源块的监测等方式,可以 验证 eNodeB 能在整个系统带宽内调度终端(调度给同一 UE 或多个 UE)。

5.1.3 5MHz 系统带宽

测试项目: 带宽和帧结构

测试分项: 支持 5MHz 系统带宽

测试目的:

验证 E-UTRAN 和 UE 支持 5MHz 系统带宽。

测试条件:

eNodeB 和测试终端均支持 5MHz 系统带宽。

测试步骤:

- 1) 配置 eNodeB 系统带宽为 5MHz,选择配置帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);使配置生效,E-UTRAN 小区开始正常工作;
- 2) 用矢量信号分析仪对 eNodeB 的发射信号进行时域分析和频域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的无线资源块;
- 5) 如单部测试终端不能占满系统带宽,则同时采用多部终端直至占满系统带宽。

预期结果:

- 1) 配置的 5MHz 系统带宽小区能正常运行;
- 2) 小区广播的 MasterInformationBlock 中 dl-Bandwidth 参数指示系统的发射带宽配置 N_{BB}为 5MHz (即取 n25);
- 3) 时域和频域分析图形正确;

- 4) 测试终端能在该小区正常接入;
- 5) 测试终端能在该小区正常建立数据无线承载;
- 6) 通过对 eNodeB 发射信号的频域分析、eNodeB 给终端调度的资源块的监测等方式,可以 验证 eNodeB 能在整个系统带宽内调度终端(调度给同一 UE 或多个 UE)。

5.1.4 10MHz 系统带宽

测试项目: 带宽和帧结构

测试分项: 支持 10MHz 系统带宽

测试目的:

验证 E-UTRAN 和 UE 支持 10MHz 系统带宽。

测试条件:

eNodeB 和测试终端均支持 10MHz 系统带宽。

测试步骤:

- 1) 配置 eNodeB 系统带宽为 10MHz,选择配置帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);使配置生效,E-UTRAN 小区开始正常工作;
- 2) 用矢量信号分析仪对 eNodeB 的发射信号进行时域分析和频域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的无线资源块;
- 5) 如单部测试终端不能占满系统带宽,则同时采用多部终端直至占满系统带宽。

预期结果:

- 1) 配置的 10MHz 系统带宽小区能正常运行;
- 2) 小区广播的 MasterInformationBlock 中 dl-Bandwidth 参数指示系统的发射带宽配置 N_{BB}为 10MHz (即取 n50);
- 3) 时域和频域分析图形正确;
- 4) 测试终端能在该小区正常接入;
- 5) 测试终端能在该小区正常建立数据无线承载;
- 6) 通过对 eNodeB 发射信号的频域分析、eNodeB 给终端调度的资源块的监测等方式,可以验证 eNodeB 能在整个系统带宽内调度终端(调度给同一 UE 或多个 UE)。

5.1.5 20MHz 系统带宽(仅适用于 1.4GHz 系统)

测试项目: 带宽和帧结构

测试分项: 支持 20MHz 系统带宽

测试目的:

验证 E-UTRAN 和 UE 支持 20MHz 系统带宽。

测试条件:

eNodeB 和测试终端均支持 20MHz 系统带宽。

测试步骤:

- 1) 配置 eNodeB 系统带宽为 20MHz,选择配置帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);使配置生效,E-UTRAN 小区开始正常工作;
- 2) 用矢量信号分析仪对 eNodeB 的发射信号进行时域分析和频域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的无线资源块;
- 5) 如单部测试终端不能占满系统带宽,则同时采用多部终端直至占满系统带宽。

预期结果:

- 1) 配置的 20MHz 系统带宽小区能正常运行;
- 2) 小区广播的 MasterInformationBlock 中 dl-Bandwidth 参数指示系统的发射带宽配置 N_{BB}为 20MHz (即取 n100);
- 3) 时域和频域分析图形正确;
- 4) 测试终端能在该小区正常接入;
- 5) 测试终端能在该小区正常建立数据无线承载;
- 6) 通过对 eNodeB 发射信号的频域分析、eNodeB 给终端调度的资源块的监测等方式,可以 验证 eNodeB 能在整个系统带宽内调度终端(调度给同一 UE 或多个 UE)。

5.1.6 上下行配置 0, 特殊子帧 5

测试项目: 帧结构

测试分项:上行/下行配置 0 (子帧配置: DSUUUDSUUU)、常规长度 CP、特殊子帧配置 5 (DwPTS:GP:UpPTS=3:9:2)

测试目的:

验证 E-UTRAN 和 UE 支持 5ms 下行-上行转换点周期,子帧配置为: DSUUUDSUUU; 支持 DwPTS:GP:UpPTS=3:9:2 的特殊子帧配置

测试条件:

eNodeB和测试终端均支持上行/下行配置 0,特殊子帧配置 5。

测试步骤:

- 1) 配置 eNodeB 系统上行/下行配置 0、特殊子帧配置 5,选择配置 20MHz 系统带宽;使配置生效,E-UTRAN 小区开始正常工作。
- 2) 用矢量信号分析仪对 eNodeB、终端的发射信号进行时域分析;
- 3) 测试终端在该小区开机进行随机接入;

4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的上行、下 行资源块所在子帧位置;

5) 配置 10MHz 系统带宽, 使配置生效, E-UTRAN 小区开始正常工作, 重复步骤 2~步骤 4。

预期结果:

- 1) 配置的小区能正常运行;
- 2) 帧结构符合配置预期;终端接收到的 SIB1 中的 subframeAssignment 为 sa0(配置 0), specialSubframePatterns 为 ssp5(配置 5);
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载;
- 5) 验证系统能在全部(常规)上行子帧、下行子帧/时隙内调度终端(调度给不同 UE 或先后调度给同一 UE)。

5.1.7 上下行配置 0, 特殊子帧 7

测试项目: 帧结构

测试分项:上行/下行配置 0 (子帧配置: DSUUUDSUUU)、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2)

测试目的:

验证 E-UTRAN 和 UE 支持 5ms 下行-上行转换点周期,子帧配置为: DSUUUDSUUU; 支持 DwPTS:GP:UpPTS=10:2:2 的特殊子帧配置

测试条件:

eNodeB和测试终端均支持上行/下行配置 0,特殊子帧配置 5。

测试步骤:

- 1) 配置 eNodeB 系统上行/下行配置 0、特殊子帧配置 5,选择配置 20MHz 系统带宽;使配置生效,E-UTRAN 小区开始正常工作。
- 2) 用矢量信号分析仪对 eNodeB、终端的发射信号进行时域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的上行、下 行资源块所在子帧位置;
- 5) 配置 10MHz 系统带宽, 使配置生效, E-UTRAN 小区开始正常工作, 重复步骤 2~步骤 4。

预期结果:

- 1) 配置的小区能正常运行;
- 2) 帧结构符合配置预期;终端接收到的 SIB1 中的 subframeAssignment 为 sa0 (配置 0), specialSubframePatterns 为 ssp7 (配置 7);
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载;

5) 验证系统能在全部(常规)上行子帧、下行子帧/时隙内调度终端(调度给不同 UE 或先后调度给同一 UE)。

5.1.8 上下行配置 1, 特殊子帧 5

测试项目: 帧结构

测试分项:上行/下行配置1(子帧配置: DSUUDDSUUD)、常规长度CP、特殊子帧配置5 (DwPTS:GP:UpPTS=3:9:2)

测试目的:

验证 E-UTRAN 和 UE 支持 5ms 下行-上行转换点周期,子帧配置为: DSUUDDSUUD; 支持 DwPTS:GP:UpPTS=3:9:2 的特殊子帧配置

测试条件:

eNodeB 和测试终端均支持上行/下行配置 1,特殊子帧配置 5。

测试步骤:

- 1) 配置 eNodeB 系统上行/下行配置 1、特殊子帧配置 5,选择配置 20MHz 系统带宽;使配置生效,E-UTRAN 小区开始正常工作。
- 2) 用矢量信号分析仪对 eNodeB、终端的发射信号进行时域分析;
- 3) 测试终端在该小区开机进行随机接入:
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的上行、下 行资源块所在子帧位置;
- 5) 配置 10MHz 系统带宽, 使配置生效, E-UTRAN 小区开始正常工作, 重复步骤 2~步骤 4。

预期结果:

- 1) 配置的小区能正常运行;
- 2) 帧结构符合配置预期;终端接收到的 SIB1 中的 subframeAssignment 为 sal (配置 1), specialSubframePatterns 为 ssp5 (配置 5);
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载;
- 5) 验证系统能在全部(常规)上行子帧、下行子帧/时隙内调度终端(调度给不同 UE 或先后调度给同一 UE)。

5.1.9 上下行配置 1, 特殊子帧 7

测试项目: 帧结构

测试分项:上行/下行配置 1 (子帧配置: DSUUDDSUUD)、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2)

测试目的:

验证 E-UTRAN 和 UE 支持 5ms 下行-上行转换点周期,子帧配置为: DSUUDDSUUD; 支持 DwPTS:GP:UpPTS=10:2:2 的特殊子帧配置

测试条件:

eNodeB 和测试终端均支持上行/下行配置 1,特殊子帧配置 7。

测试步骤:

- 1) 配置 eNodeB 系统上行/下行配置 1、特殊子帧配置 7,选择配置 20MHz 系统带宽; DwPTS 传送数据,使配置生效,E-UTRAN 小区开始正常工作。
- 2) 用矢量信号分析仪在对 eNodeB、终端的发射信号进行时域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的上行、下 行资源块所在子帧位置;
- 5) 配置 10MHz 系统带宽, 使配置生效, E-UTRAN 小区开始正常工作, 重复步骤 2~步骤 4。

预期结果:

- 1) 配置的小区能正常运行;
- 2) 帧结构符合配置预期;终端接收到的 SIB1 中的 subframeAssignment 为 sa1(配置 1), specialSubframePatterns 为 ssp7(配置 7);
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载;
- 5) 可以验证系统能在全部(常规)上行子帧、下行子帧和 DwPTS 时隙内调度终端(调度给不同 UE 或先后调度给同一 UE)。

5.1.10 上下行配置 2, 特殊子帧 5

测试项目: 帧结构

测试分项:上行/下行配置 2 (子帧配置: DSUDDDSUDD)、常规长度 CP、特殊子帧配置 5 (DwPTS:GP:UpPTS=3:9:2)

测试目的:

验证 E-UTRAN 和 UE 支持 5ms 下行-上行转换点周期,子帧配置: DSUDDDSUDD; 支持 DwPTS:GP:UpPTS=3:9:2 的特殊子帧配置

测试条件:

eNodeB 和测试终端均支持上行/下行配置 2,特殊子帧配置 5。

测试步骤:

- 1) 配置 eNodeB 系统上行/下行配置 2、特殊子帧配置 5,选择配置 20MHz 系统带宽;使配置生效,E-UTRAN 小区开始正常工作;
- 2) 用矢量信号分析仪在对 eNodeB、终端的发射信号进行时域分析;
- 3) 测试终端在该小区开机进行随机接入;

4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的上行、下 行资源块所在子帧位置;

5) 配置 10MHz 系统带宽, 使配置生效, E-UTRAN 小区开始正常工作, 重复步骤 2~步骤 4。

预期结果:

- 1) 配置的小区能正常运行;
- 2) 帧结构符合配置预期;终端接收到的 SIB1 中的 subframeAssignment 为 sa2 (配置 2), specialSubframePatterns 为 ssp5 (配置 5);
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载;
- 5) 可以验证系统能在全部(常规)上行子帧、下行子帧内调度终端(调度给不同 UE 或先后调度给同一 UE)。

5.1.11 上下行配置 2, 特殊子帧 7

测试项目: 帧结构

测试分项:上行/下行配置 2 (子帧配置: DSUDDDSUDD)、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2)

测试目的:

验证 E-UTRAN 和 UE 支持 5ms 下行-上行转换点周期,子帧配置: DSUDDDSUDD; 支持 DwPTS:GP:UpPTS=10:2:2 的特殊子帧配置

测试条件:

eNodeB和测试终端均支持上行/下行配置 2,特殊子帧配置 7。

测试步骤:

- 1) 配置 eNodeB 系统上行/下行配置 2、特殊子帧配置 7,选择配置 20MHz 系统带宽; DwPTS 传送数据,使配置生效,E-UTRAN 小区开始正常工作;
- 2) 用矢量信号分析仪在对 eNodeB、终端的发射信号进行时域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程,并观察系统给终端调度的上行、下 行资源块所在子帧位置;
- 5) 配置 10MHz 系统带宽, 使配置生效, E-UTRAN 小区开始正常工作, 重复步骤 2~步骤 4。

预期结果:

- 1) 配置的小区能正常运行;
- 2) 帧结构符合配置预期;终端接收到的 SIB1 中的 subframeAssignment 为 sa2 (配置 2), specialSubframePatterns 为 ssp7 (配置 7);
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载;

5) 可以验证系统能在全部(常规)上行子帧、下行子帧和 DwPTS 时隙内调度终端(调度给不同 UE 或先后调度给同一 UE)。

5.2 参考信号

5.2.1 下行参考信号

测试项目:参考信号

测试分项:下行参考信号

测试目的:

验证 eNodeB 和 UE 支持下行小区公共参考信号的频域位移

测试条件:

eNodeB 和测试终端硬件、软件工作正常; eNodeB 支持 2×2MIMO。

测试步骤:

- 1) 选择配置 eNodeB 工作为:系统带宽为 20MHz, 帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2):
- 2) 配置物理层小区标识为 300;
- 3) 使上述配置生效, E-UTRAN 小区开始正常工作;
- 4) 用矢量信号分析仪对 eNodeB 的发射信号进行时、频域分析;
- 5) 测试终端在该小区开机进行随机接入;
- 6) 测试终端进行 RRC 连接建立、无线承载建立等过程, PDSCH 采用 2×2MIMO 传输方式(MIMO 模式 3 或模式 4);
- 7) 依次改变物理层小区标识为 301、302、303、304、305, 重复步骤 6 的测试。

预期结果:

- 1) 天线端口 0、天线端口 1 上发射的小区公共参考信号,根据物理层小区标识进行频域位移,参考信号图案符合标准;
- 2) 测试终端能在该小区正常接入;
- 3) 测试终端能在该小区正常建立数据无线承载,进行下行 2×2MIMO 传输。

5. 2. 2 上行 PUSCH 参考信号

测试项目: 参考信号

测试分项: 上行 PUSCH 参考信号

测试目的:

验证 eNodeB 和 UE 支持配置、收发上行 PUSCH 解调用参考信号

测试条件:

eNodeB 和测试终端硬件、软件工作正常。

测试步骤:

1) 选择配置 eNodeB 工作为:系统带宽为 20MHz,帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);上行参考信号序列组跳转功能、上行参考信号序列跳转功能均关闭:

- 2) 用矢量信号分析仪对终端的发射信号进行时、频域分析;
- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程;
- 5) 开启上行参考信号序列组跳转功能(可选),或开启上行参考信号序列跳转功能(可选), 其它配置不变,重复步骤 2~3。

预期结果:

- 1) 上行 PUSCH 解调用参考信号时频域位置符合标准要求;
- 2) 测试终端能在该小区正常接入;
- 3) 测试终端能在该小区正常建立数据无线承载;
- 4) eNodeB 支持上行参考信号序列循环位移,即 eNodeB 能够根据需要配置 UE 使用适当的 ZC 序列循环位移版本发送其上行 RS:
 - a) RRC 中配置 PUSCH-ConfigCommon -> UL-ReferenceSignalsPUSCH->cyclicShift 参数, (PUSCH-ConfigCommon 是 SIB2->RadioResourceConfigCommonSIB 或切换 指

RRCConnectionReconfiguration->MobilityControlInfo->RadioResourceConfigCommon 中的一个参数);

b) DCI format 0 中配置 "Cyclic shift for DM RS"。

测试说明:协议规定,上行参考信号序列组跳转关闭时而且序列长度>=72 才可开启序列跳转。

5. 2. 3 上行 PUCCH 参考信号

测试项目: 参考信号

测试分项: 上行 PUCCH 参考信号

测试目的:

验证 E-UTRAN 和 UE 支持配置、接收上行 PUCCH 解调用参考信号

测试条件:

eNodeB 和配合测试终端硬件、软件工作正常。

测试步骤:

- 1) 选择配置 eNodeB 工作为:系统带宽为 20MHz, 帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);上行参考信号序列组跳转功能关闭;
- 2) 用矢量信号分析仪对终端的发射信号进行时、频域分析;

- 3) 测试终端在该小区开机进行随机接入;
- 4) 测试终端进行 RRC 连接建立、无线承载建立等过程;
- 5) 通过不同的参数配置等方式触发 UE 先后发送不同的 PUCCH 格式:格式 1、1a、1b、2、2b:
- 6) 开启上行参考信号序列组跳转功能(可选),其它配置不变,重复步骤2~5。

预期结果:

- 1) 测试 eNodeB 可以配置测试 UE 发送各种格式的 PUCCH; eNodeB 可以正确解调各种格式的 PUCCH;
- 2) 上行 PUCCH 解调用参考信号时频域位置符合标准要求:
- 3) 测试终端能在该小区正常接入;
- 4) 测试终端能在该小区正常建立数据无线承载。
- 5) eNodeB 支持上行参考信号序列循环位移,即 eNodeB 能够根据需要配置 UE 使用适当的 ZC 序列循环位移版本发送其上行 RS:

RRC SIB2 中配置 PUCCH-ConfigCommon -> deltaPUCCH-Shift 参数(取值 ds1/ds2/ds3,

也即对应值 1、2、3。该参数即 36.211 中 $\Delta_{\text{shift}}^{\text{PUCCH}}$

RRC SIB2 中配置 PUCCH-ConfigCommon \rightarrow nCS-AN(即 36. 211 中 5. 4 节的 $N_{cs}^{(l)}$,取值 $0\sim7$)

5.3 多天线技术测试

5.3.1 PDSCH MIMO 传输技术(模式 1)

测试项目: 多天线技术测试

测试分项: PDSCH MIMO 传输技术(模式1)

测试目的:

验证 eNodeB 和 UE 能进行 PDSCH 传输模式 1 传输。

测试条件:

测试 UE 侧配置 2 个接收天线。

测试步骤:

- 1) eNodeB 向测试 UE 进行连续业务下传。eNodeB 采用传输模式 1 发送 PDSCH。
- 2) 监测 PDSCH 采用的 MIMO 传输方式、调制编码方式和相关信令。

预期结果:

- 1) eNodeB 在 RRC 参数 AntennaInfoDedicated-> transmissionMode 中配置为"tml";
- 2) 系统显示, eNodeB 能够采用传输模式 1 发送 PDSCH, 同时采用 DCI format 1 或 1A 指示测试 UE 进行接收。

测试说明:本项目对室内分布系统为必选,其它类型基站为可选。

5.3.2 PDSCH MIMO 传输技术(模式2)

测试项目: 多天线技术测试

测试分项: PDSCH MIMO 传输技术(模式2)

测试目的:

验证 eNodeB 和 UE 能进行 PDSCH 传输模式 2 传输。

测试条件:

测试 UE 侧配置 2 个接收天线。

测试步骤:

- 1) eNodeB 向测试 UE 进行连续业务下传。eNodeB 采用传输模式 2 发送 PDSCH。选择适合的信道 SINR 等条件。
- 2) 监测 PDSCH 采用的 MIMO 传输方式、调制编码方式和相关信令。

预期结果:

- 1) eNodeB 在 RRC 参数 AntennaInfoDedicated-> transmissionMode 中配置为"tm2";
- 2) 系统显示, eNodeB 能够采用传输模式 2 发送 PDSCH, 同时采用 DCI format 1 或 1A 指示测试 UE 进行 MIMO 接收。

5.3.3 PDSCH MIMO 传输技术(模式3)

测试项目: 多天线技术测试

测试分项: PDSCH MIMO 传输技术 (模式 3)

测试目的:

验证 eNodeB 和 UE 能进行 PDSCH 传输模式 3 传输。

测试条件:

测试 UE 侧配置 2 个接收天线。

测试步骤:

- 1) eNodeB 向测试 UE 进行连续业务下传。eNodeB 采用传输模式 3 发送 PDSCH。
- 2) 选择适合的信道 SINR 等条件, 使系统自动转换到大延迟 CDD 传输方式。
- 3) 监测 PDSCH 采用的 MIMO 传输方式、调制编码方式和相关信令。
- 4) 调整信道 SINR 等条件,使系统自动回落到发送分集传输方式。监测 PDSCH 采用的 MIMO 传输方式、调制编码方式和相关信令。

预期结果:

- 1) eNodeB 在 RRC 参数 AntennaInfoDedicated-> transmissionMode 中配置为"tm3";
- 2) 系统显示, eNodeB 能够采用传输模式 3 发送 PDSCH, 能够根据信道相关性和 SINR 变化, 在大延迟 CDD 和发射分集方式之间自适应转换;

3) 步骤 3 中,在采用大延迟 CDD 空间复用时采用 DCI format 2A 指示测试 UE 进行 MIMO 接收, DCI 2A 中指示传送两个传输块(transport block 1, transport block 2)的 MCS、NDI 和 RV 等信息:

4) 步骤 5 中,在采用发射分集时采用 DCI format 1A 或 2A 指示测试 UE 进行 MIMO 接收。如果采用 DCI format 2A,则指示只传送一个传输块(transport block 1 或 transport block 2)的 MCS、NDI 和 RV 等信息(另一个传输块 disabled,即该传输块对应的 $I_{MCS} = 0$ 而且 $rv_{ids} = 1$)。

5.4 同步和小区搜索

测试项目:下行同步和小区搜索

测试目的:

验证 eNodeB 和 UE 支持进行下行同步和小区搜索过程。

测试条件:

eNodeB 和测试终端工作正常。

测试步骤:

- 1) 根据 eNodeB 支持的各种系统带宽(20MHz、10MHz 必选,其它可选)配置 eNodeB,并使配置生效,E-UTRAN 小区开始正常工作;选择帧结构为上行/下行配置 1、常规长度 CP、特殊子帧配置 7(DwPTS:GP:UpPTS=10:2:2);
- 2) 配置物理小区标识为 300, E-UTRAN 小区开始正常工作
- 3) 用矢量信号分析仪对 eNodeB 的发射信号进行时、频域分析;
- 4) 测试终端在该小区开机;
- 5) 依次修改物理小区标识为 301, 302, 303, 304, 305, 重复步骤 3⁴;
- 6) 针对 eNodeB 支持的不同系统带宽 (20MHz、10MHz 必选, 其它可选), 重复步骤 1~步骤 5 的测试。

预期结果:

- 1) eNodeB 发射的主同步信号 (PSS)、辅同步信号 (SSS) 时频域位置、以及主同步信号序列、辅同步信号序列符合标准要求;测试终端和矢量信号分析仪可以正确检出小区的物理小区标识;
- 2) 测试终端能在该小区完成下行同步与小区搜索过程,正常驻留。

5.5 随机接入

5.5.1 切换时基于非竞争的随机接入

测试项目: 随机接入

测试分项: 切换时非竞争的随机接入

测试目的:

验证系统可实现切换时基于非竞争的随机接入过程。

测试条件:

- 1) 系统带宽 20MHz, 帧结构为: 上行/下行配置 1 (子帧配置: DSUUDDSUUD)、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);
- 2)小区 Cell1、Cell2 工作正常,可满足小区间同频切换信号条件;按 PRACH 前导格式 0 或格式 4 进行配置,并且配置切换时采用基于非竞争的随机接入过程(Cell2 中在 SIB2 中广播用于竞争随机接入的 Preamble 数目 (numberOfRA-Preambles) 小于 64 个,(64-numberOfRA-Preambles) 个 Preamble 用于非竞争随机接入);
- 3) UE 在 Cell1 已发起某业务,处于 RRC CONNECTED 状态;
- 4) 由于 UE 移动或调整 Cell1、Cell2 的相对信号电平, 触发 UE 从 Cell1 向 Cell2 切换。

测试步骤:

- 1) 系统在发送给UE的切换指令RRCConnectionReconfiguration消息中,利用 RACH-ConfigDedicated参数指示UE随机接入相关配置参数(ra-PreambleIndex和 ra-PRACH-MaskIndex);
- 2) UE在目标小区Cel12进行上行同步时根据*RACH-ConfigDedicated*给出的参数,发送PRACH preamble。

过程如下:

	过程描述	UE-eNodeB	消息
	系 统 发 送	<	-
	$\it RRCC onnection Reconfiguration$		
:	给 UE,指示 UE 进行 Celll 到 Cell2		
	的切换,其中包括随机接入前导资		
,	源		
1	UE 按 照 收 到 的	>	(PRACH Preamble)
	$\it RRCC onnection Reconfiguration$		
	消息中给出的配置在 Ce112 发送		
]	PRACH preamble		
	系统在 Cell2 发送 Random Access	<	Random Access
	Response (RAR) MAC PDU (RAPID 첫		Response
,	应上一步 UE 发送的 PRACH		
	preamble)		

UE 在 Cell2 中发送 MAC PDU,其中	>	MAC PDU	
包含			
RRCConnectionReconfigurationCo			
mplete			

预期结果:

- 1) UE 随机接入成功,在目标小区 Cell2 处于 RRC CONNECTED 状态。
- 2) UE 在 Cell2 中发送的 preamble ID 应与 RRCConnectionReconfiguration 消息中 *RACH-ConfigDedicated* 参数指示的 ra-PreambleIndex 一致。

测试说明:

切 换 指 令 RRCConnectionReconfiguration 消 息 中 *RACH-ConfigDedicated 中 的 ra-PreambleIndex* 取值非 "000000",即不是由 UE 的 MAC 选择 *ra-PreambleIndex*,即随机接入为非竞争的随机接入过程。

5.5.2 切换时基于竞争的随机接入

测试项目: 随机接入

测试分项: 切换时基于竞争的随机接入

测试目的:

验证系统可实现切换时基于竞争的随机接入过程。

测试条件:

- 1) 系统带宽 20MHz, 帧结构为: 上行/下行配置 1 (子帧配置: DSUUDDSUUD)、常规长度 CP、特殊子帧配置 7 (DwPTS:GP:UpPTS=10:2:2);
- 2) 小区 Ce111、Ce112 工作正常,可满足小区间同频切换信号条件;按 PRACH 前导格式 0 或格式 4 进行配置,并且配置切换时采用基于竞争的随机接入过程(或者非竞争随机接入);
- 3) UE 在 Cell1 已发起某业务,处于 RRC CONNECTED 状态;
- 4) 由于 UE 移动或调整 Cell1、Cell2 的相对信号电平, 触发 UE 从 Cell1 向 Cell2 切换。

测试步骤:

- 1) 系统在发送给UE的切换指令RRCConnectionReconfiguration消息中,不包括
 RACH-ConfigDedicated参数;
- 2) UE在目标小区Ce112进行上行同步时采取基于竞争的随机接入过程。 过程如下:

过程	苗述			UE-eNodeB	消息
系	统	发	送	<	-
RRCCo	onnectionRe	econfigu.	ration		
给UE	,指示UE进	行 Cell1	到 Ce112		
的	切换,	不	包 括		

RACH-ConfigDedicated参数		
UE 在目标小区发起上行同步,采用	>	(PRACH Preable)
基于竞争的随机接入, 发送		
Preamble		
系统在 Cell2 发送 Random Access	<	Random Access
Response (RAR) MAC PDU (RAPID 对		Response
应UE发送的PRACH preamble)		
UE 在 Cell2 中发送 MAC PDU, 其中	>	MAC PDU
包含		
RRCConnectionReconfigurationCo		
mplete(MAC PDU 中包含 C-RNTI MAC		
控制单元)		
系统在 PDCCH 中通过 UE 的 C-RNTI	<	PDCCH
指示对 UE 的调度,和对 UE 新的 UL		
grant		

预期结果:

UE 随机接入成功,在目标小区 Cel12 处于 RRC_CONNECTED 状态。

6 RRC 协议接口测试

6.1 小区选择和重选

6.1.1 小区选择

测试项目: 小区选择和重选

测试分项: 小区选择

测试目的:

验证 UE 当前驻留小区的 TAI 和上次成功注册的 TAI 不同、相同时,可以正常建立 RRC 连接

测试条件:

1) 两个小区

CellA: TAI-1 (PLMN-1 + TAC-1), CellB: TAI-2 (PLMN-1 + TAC-2);

2) UE 有一个有效的 IMSI, HPLMN 为 PLMN-1。

测试步骤:

- 1) 开启小区 A, 关闭小区 B, UE 开机;
- 2) 用户发起 DETACH 成功后关机;
- 3) 开启小区 B, 关闭小区 A, 再次开机;
- 4) 关机。

预期结果:

- 1) UE开机后驻留CellA, 自动注册成功, 分配到GUTI-1;
- 2) UE开机后驻留CellB, 自动发起注册, UE发送的RRCConnectionRequest消息中不包含

S-TMSI;

3) UE 发送的 RRCConnectionSetupComplete 消息中携带 registered MME (不包含plmnIdentity, mmegi和mmec与GUTI-1对应);

4) UE 注册成功。

6.1.2 小区重选

测试项目: 小区选择和重选

测试分项: 小区重选

测试目的:

验证 UE 可以正常小区重选

测试条件:

1) 两个小区

CellA: TAI-1 (PLMN-1 + TAC-1), CellB: TAI-2 (PLMN-1 + TAC-2);

2) UE 有一个有效的 IMSI, HPLMN 为 PLMN-1。

测试步骤:

- 1) 开启小区A和小区B;
- 2) UE在小区A开机,没有业务,进入IDLE态;
- 1) UE 移动到小区 B;
- 2) 终端发起业务接进入连接态。

预期结果:

- 1) UE 成功小区 A 重选到小区 B;
- 2) 可看到终端通过小区 B 发起业务。

6.2 RRC 连接控制

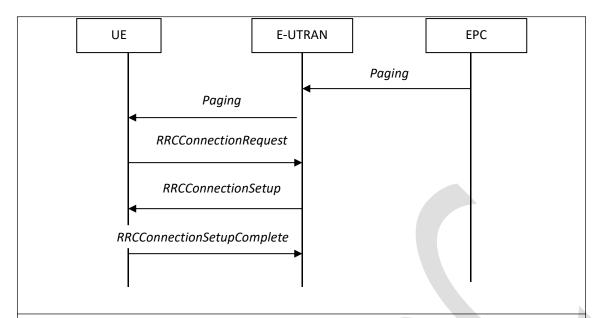
6. 2. 1 寻呼处于 IDLE 状态的 UE

测试项目: RRC 连接控制

测试分项: 寻呼处于 RRC_IDLE 状态的 UE

测试目的:

验证可以寻呼处于 RRC_IDLE 状态的 UE。


测试条件:

UE 已注册、处于 RRC_IDLE 状态。

测试步骤:

EPC 寻呼 UE。

消息流:

预期结果:

- 1) Paging消息中包含 EPC 已分配给 UE 的 S-TMSI;
- 2) 成功寻呼到 UE, UE 发起 RRC 连接建立过程, UE 进入 RRC_CONNECTED 状态;
- 3) RRCConnectionRequest中establishmentCause为"mt-Access"。

6.2.2 系统信息改变触发寻呼

测试项目: RRC 连接控制

测试分项:系统信息改变通知触发寻呼处于 RRC IDLE 状态的 UE

测试目的:

验证系统信息改变,触发寻呼处于 RRC_IDLE 状态的 UE。

测试条件:

UE 已注册、处于 RRC_IDLE 状态。

测试步骤:

由于系统信息改变(如改变 SIB2 中的 prach-ConfigurationIndex),E-UTRAN 寻呼处于 RRC_IDLE 状态的 UE。

消息流:

UE - E-UTRAN	消息			
<	Paging			
(如下消息流为示例	(如下消息流为示例:)			
经过一定时间后 UE 发起随机接入,建立 RRC 连接				
	RRCConnectionRequest			
	RRCConnectionSetup			
>	RRCConnectionSetupComplete			

预期结果:

1) Paging消息中包含 systemInfoModification参数,而且取值为 TRUE;

2) 成功寻呼到 UE, UE 重新读取所需的系统信息。

6.2.3 RRC 连接建立

测试项目: RRC 连接控制

测试分项: RRC 连接建立

测试目的:

验证处于 IDLE 模式下的 UE 在发起呼叫时,可以正常建立 RRC 连接(包括 SRB1)。

测试条件:

UE 已注册、处于 RRC IDLE 状态。

测试步骤:

UE 发起一个业务。

消息流:

UE - E-UTRAN	消息
>	RRCConnectionRequest (ue-Identity:
	S-TMSI, establishmentCause)
<	RRCConnectionSetup
>	RRCConnectionSetupComplete

预期结果:

RRC 连接成功建立, UE 处于 RRC_CONNECTED 状态, 并且建立了 SRB1。

6. 2. 4 RRC 连接释放

测试项目: RRC 连接控制

测试分项: RRC 连接释放

测试目的:

验证可以正常释放处于 RRC CONNECTED 状态下的 UE 的 RRC 连接和所有无线资源。

测试条件:

UE 已处于 RRC_CONNECTED 状态。

测试步骤:

通过释放呼叫等方式触发 E-UTRAN 释放 RRC 连接。

消息流:

UE - E-UTRAN	消息
<	RRCConnectionRelease

预期结果:

RRC 连接成功释放, UE 处于 RRC IDLE 状态。

6.2.5 无线承载 SRB2 建立

测试项目: RRC 连接控制

测试分项: 无线承载 SRB2 建立

测试目的:

验证 E-UTRAN 正常建立 SRB2。

测试条件:

UE 处于 RRC IDLE 状态。

测试步骤:

消息流:

UE - E-UTRAN	消息
>	RRC: RRCConnectionRequest
<	RRC: RRCConnectionSetup
>	RRC: RRCConnectionSetupComplete
	NAS: SERVICE REQUEST
<	RRC: SecurityModeCommand
>	RRC: SecurityModeComplete
<	RRCConnectionReconfiguration
	(srb-ToAddModLis)
	RRCConnectionReconfigurationComple
	te

预期结果:

- 1) E-UTRAN 发送 RRCConnectionReconfiguration 消息, 其中带有 radioResourceConfigDedicated ->srb-ToAddModLis ->srb-Identity(不在UE当前无线资源配置中);
- 2) 根据 IE radioResourceConfigDedicated中给出的参数成功建立 SRB2。

6.2.6 数据无线承载(DRB)建立

测试项目: RRC 连接控制

测试分项: 数据无线承载 (DRB) 建立

测试目的:

验证 E-UTRAN 正常建立数据无线承载 (DRB)。

测试条件:

- 1) UE 处于 RRC_CONNECTED 状态;
- 2) 触发数据无线承载(DRB)建立过程。

测试步骤:

消息流:

UE - E-UTRAN	消息
<	RRCConnectionReconfiguration
	(drb-ToAddModLists)
>	RRCConnctionReconfigurationCoplete

预期结果:

- 1) E-UTRAN 发送 RRCConnectionReconfiguration 消息, 其中带有 radioResourceConfigDedicated -> drb-ToAddModList s ->drb-Identity (不在UE 当前无线资源配置中)和 dedicatedInfoNASList;
- 2) 根据 IE radioResourceConfigDedicated中给出的参数成功建立数据无线承载(DRB)。

6.2.7 数据无线承载(DRB)释放

测试项目: RRC 连接控制

测试分项: 数据无线承载 (DRB) 释放

测试目的:

验证终端正常释放数据无线承载 (DRB)。

测试条件:

- 1) 终端处于 RRC CONNECTED 状态,已建立两个数据无线承载 (DRB);
- 2) 触发数据无线承载(DRB)释放过程。

测试步骤:

消息流:

UEUTRAN	消息
<	RRCConnectionReconfiguration
	(drb-ToReleaseList)
>	RRCConnectionReconfigurationComple t

预期结果:

- 1) 终端接收到 E-UTRAN 发送的 RRCConnectionReconfiguration 消息, 其中带有 radioResourceConfigDedicated -> drb-ToReleaseList ->drb-Identity (为UE已建立的一个数据无线承载);
- 2) 终端根据 IE radioResourceConfigDedicated 中给出的参数成功释放该数据无线承载 (DRB)。

6.3 终端能力上报

测试项目:终端能力上报

测试目的:

验证 UE 可以支持终端能力上报。

测试条件:

基站正常工作, UE 处于连接态。

测试步骤:

网络侧发送 UECapabilityEnquiry 消息。

预期结果:

终端构建 UECapabilityInformation 消息并发送给 EUTRAN。

6.4 移动性管理

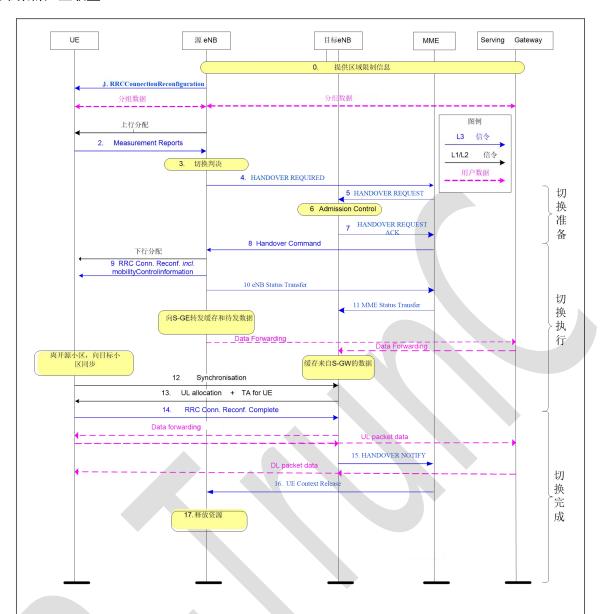
6.4.1 S1接口同频切换,基于竞争

测试项目: 移动性管理

测试分项: S1 接口同频切换, 基于竞争

测试目的:

验证 E-UTRAN 可以基于 S1 接口的同频切换,基于竞争的切换。


测试条件:

- 1) UE 已注册、处于 RRC IDLE 状态。
- 2) UE 驻留在 E-UTRA 小区 Cell1, Cell1 有同频 E-UTRA 邻区 Cell2。
- 3) Cell1、Cell2 分别为 eNodeB1、eNodeB2 下小区, eNodeB1、eNodeB2 位于同一 MMC/S-GW下; eNodeB1、eNodeB2 间无 X2 接口连接。

测试步骤:

- 1) UE 在小区 Cell1 (即 Source Cell) 发起某业务进入 RRC_CONNECTED 状态;
- 2) 通过改变 Cell1、Cell2 的参考信号强度触发 UE 由 Cell1 切换到 Cell2 (即 Target Cell)。

参考消息流:

消息 1:源 eNodeB 配置 UE 的测量(通过 RRCConnectionReconfiguration 中的 measConfig)。 消息 4:源 eNodeB 在发给 MME 的 HANDOVER REQUIRED 消息中包含 MME UE S1AP ID、eNodeB UE S1AP ID、Source to Target Transparent Container 等参数;

消息 5: MME 在发给目标 eNodeB 的 HANDOVER REQUEST 消息中包含 MME UE S1AP ID、E-RABs To Be Setup List、Source to Target Transparent Container 等参数;

消息 7:目标 eNodeB 在发给 MME 的 HANDOVER REQUEST ACKNOWLEDGE 中包含 E-RABs Admitted List、Target to Source Transparent Container 等参数;

消息 8: MME 向源 eNodeB 发送 HANDOVER COMMAND 消息,包含 E-RABs Subject to Forwarding List (可选)、Target to Source Transparent Container 等参数;

消息 9: 源 eNodeB 向 UE 发送 RRCConnectionReconfiguration message (包含 MobilityControlInfo); RRCConnectionReconfiguration消息中的 mobilityControlInfo

不包含 rach-ConfigDedicated 参数 (即专用的 RACH preamble)

消息 12: UE 向目标小区上行同步时使用基于竞争的随机接入过程。

消息 16: MME 发送 UE CONTEXT RELEASE COMMAND 给源 eNodeB, 通知源 eNodeB 释放资源。

预期结果:

- 1) 成功切换到目标 eNodeB; 业务保持连续;
- 2) 源 eNodeB 相关资源释放完成;
- 3) 查看 preamble ID 来判断是竞争还是非竞争切换。

6.4.2 S1 接口同频切换,基于非竞争

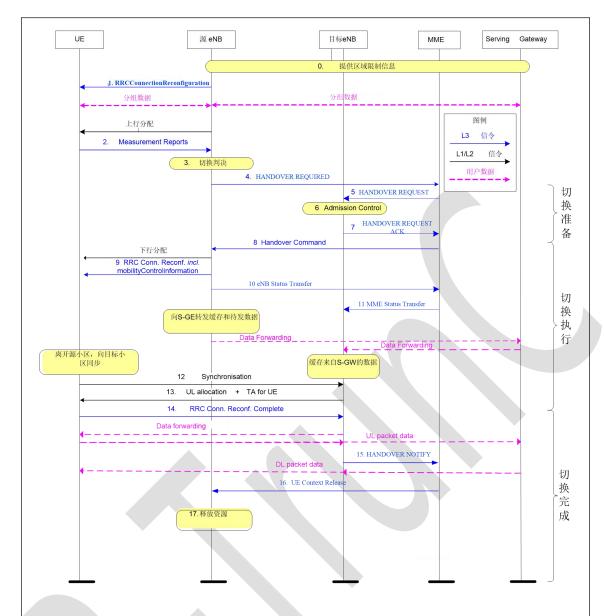
测试项目: 移动性管理

测试分项: S1 接口的同频切换, 基于非竞争

测试目的:

验证 E-UTRAN 可以完成基于 S1 接口的同频切换, 无竞争的切换。

测试条件:


- 1) UE 已注册、处于 RRC IDLE 状态。
- 2) UE 驻留在 E-UTRA 小区 Cell1, Cell1 有同频 E-UTRA 邻区 Cell2。
- 3) Cell1、Cell2 分别为 eNodeB1、eNodeB2 下小区, eNodeB1、eNodeB2 位于同一 MMC/S-GW下; eNodeB1、eNodeB2 间无 X2 接口连接。

测试步骤:

- 1) UE 在小区 Cell1 发起某业务进入 RRC CONNECTED 状态;
- 2) 通过改变 Cell1、Cell2 的参考信号强度触发 UE 由 Cell1 切换到 Cell2。

参考消息流:

流程图同 6.4.1。

消息 9: 源 eNodeB 向 UE 发送 RRCConnectionReconfiguration message (包含 MobilityControlInfo); RRCConnectionReconfiguration消息中的 mobilityControlInfo 包含 rach-ConfigDedicated参数 (即专用的 RACH preamble)

消息 12: UE 向目标小区上行同步时使用无竞争的随机接入过程。

预期结果:

- 1) 成功切换到目标 eNodeB; 业务保持连续;
- 2) 源 eNodeB 相关资源释放完成;
- 3) 查看 preamble ID 来判断是竞争还是非竞争切换。

7 安全功能接口测试

7.1 AS 层消息安全

测试项目: UE支持AS消息和数据安全功能

测试目的:验证MME能触发eNodeB发起AS security mode command流程,UE完成RRC信令以及用户面的加密和一致性保护。

预置条件:

- 1) EPS网络中各网元系统及操作维护台运行正常;
- 2) 用户在HSS中已签约EPS业务;
- 3) 在MME上配置用户附着过程中需要鉴权加密;
- 4) 在MME上建立S1接口跟踪,用户跟踪,GTPC跟踪;
- 5) eNB配置RRC完整性保护算法和加密算法列表,并排列优先级,以前后顺序作为算法选择的优先级顺序。

测试步骤:

- 1) UE成功附着到网络;
- 2) MME在Initial Context Setup Request消息中把Security Key下发给eNodeB, eNodeB 发起AS Security Mode Command流程;
- 3) eNodeB对AS Security Mode Command消息进行完整性保护;
- 4) UE对AS Security Mode Command消息进行完整性检查通过;
- 5) UE使用算法对AS Security Mode Complete消息进行完整性保护;
- 6) eNB对AS Security Mode Complete消息进行完整性检查处理;
- 7) 在网络侧查询用户的信息。

预期结果:

- 1) UE成功附着到网络;
- 2) MME在Initial Context Setup Request消息中把Security Key下发给eNodeB, eNodeB 发起AS Security Mode Command流程;
- 3) eNB对AS Security Mode Command消息进行完整性保护;
- 4) UE对AS Security Mode Command消息进行完整性检查通过;
- 5) UE使用算法对AS Security Mode Complete消息进行完整性保护;
- 6) eNB对AS Security Mode Complete消息进行完整性检查处理;
- 7) 用户EMM状态为EMM-REGISTERED;
- 8) 消息跟踪能够跟踪到相应的消息,流程正确。

7.2 加密和完整性保护算法

7. 2. 1 ZUC 算法

测试项目: 加密和完整性保护算法

测试分项: ZUC算法技术

测试目的:验证eNodeB支持ZUC算法。

预置条件:

- 1) EPS 网络中各网元系统及操作维护台运行正常;
- 2) UE, eNodeB, MME 支持 ZUC 算法功能;
- 3) 用户在 HSS 中已签约 EPS 业务;
- 4) MME 中没有该用户的信息;
- 5) eNB 的操作维护台中配置 ZUC 算法优先级最高;
- 6) 在 MME 上打开认证加密开关,并配置用户附着过程中需要认证。

测试步骤:

- 1) UE开机发起IMSI附着,是否附着成功;
- 2) 查看UE发送的attach request消息,检查UE携带的UE Security Capabilities信元中是否包括EEA3和EIA3;
- 3) 查看eNB配置算法列表中是否包含有EIA3和EEA3算法, eNB是否在AS Security Mode Command 消息中包含EIA3/EEA3算法进行完整性保护。查看AS Security Mode Command是否携带选择的EIA3/EEA3;
- 4) UE是否对AS Security Mode Command消息进行完整性检查通过;
- 5) UE是否使用EIA3/EEA3算法对AS Security Mode Complete消息进行完整性保护保护;
- 6) eNB是否使用EIA3/EEA3算法对AS Security Mode Complete消息进行完整性保护校验;
- 7) 默认承载是否建立成功;
- 8) 查看用户信息;
- 9) 通过UE进行上行PING包数据测试,UE使用ZUC算法进行加密, eNB使用ZUC算法进行解密。对于PING包数据, UE侧通过工具查看明文报文, eNB侧通过工具查看解密后报文, 检测UE处的明文和eNB解密后的报文的内容是否一致;
- 10) 通过eNB进行下行PING包数据测试,eNB使用ZUC算法进行加密,UE使用ZUC算法进行解密。对于PING包数据,eNB侧通过工具查看明文报文,UE侧通过工具查看解密后报文,检测eNB处的明文报文和UE解密后的报文的内容是否一致;

预期结果:

- 1) UE成功附着到网络;
- 2) UE发送的attach request消息,携带的UE网络能力中包含EEA3和EIA3;
- 3) eNB在AS Security Mode Command消息中选择 EEA3和EIA3;
- 4) eNB对AS Security Mode Command消息进行完整性保护;
- 5) UE对AS Security Mode Command消息进行完整性检查通过;
- 6) UE使用EIA3/EEA3算法对AS Security Mode Complete消息进行完整性保护;
- 7) eNB对AS Security Mode Complete消息进行完整性检查通过;

- 8) 默认承载建立成功;
- 9) 用户EMM状态为EMM-REGISTERED;
- 10) 消息跟踪能够跟踪到相应的消息,流程正确;
- 11) 对于上行PING包数据,UE侧查看明文报文,eNB侧查看解密后报文,二者报文内容一致;

12) 对于下行PING包数据, eNB侧查看明文报文, UE侧查看解密后报文, 二者报文内容一致。

7.2.2 SNOW 3G 算法

测试项目: 加密和完整性保护算法

测试分项: SNOW 3G算法

测试目的: 验证UE支持SNOW 3G算法。

预置条件:

1) EPS 网络中各网元系统及操作维护台运行正常;

- 2) UE, eNodeB, MME 支持 SNOW 3G 算法功能;
- 3) 用户在 HSS 中已签约 EPS 业务;
- 4) eNode、MME 的操作维护台中 SNOW 3G 算法优先级别;
- 5) MME 中没有该用户的信息;
- 6) 在 MME 上打开认证加密开关,并配置用户附着过程中需要认证。

测试步骤:

- 1) UE开机发起IMSI附着,是否附着成功;
- 2) 查看UE发送的attach request消息,携带的UE网络能力中是否包含EEA1和EIA1;
- 3) 检查UE携带的UE Security Capabilities信元中是否包括EEA1和EIA1,查看MME配置算法列表中是否包含有EIA1和EEA1算法;
- 4) eNB是否在AS Security Mode Command消息中包含EIA1/EEA1算法进行完整性保护。查看AS Security Mode Command是否携带选择的EIA1/EEA1:
- 5) UE是否对AS Security Mode Command消息进行完整性检查通过;
- 6) UE是否使用EIA1/EEA1算法对AS Security Mode Complete消息进行完整性保护保护;
- 7) eNB是否使用EIA1/EEA1算法对AS Security Mode Complete消息进行完整性保护校验;
- 8) 默认承载是否建立成功;
- 9) 查看用户信息;
- 10) 消息跟踪是否能够跟踪到相应的消息,流程是否正确;
- 11) 通过UE进行上行PING包数据测试,UE使用SNOW 3G算法进行加密,eNB使用SNOW 3G算法进行解密。对于PING包数据,UE侧通过工具查看明文报文,eNB侧通过工具查看解密后报文,检测UE处的明文和eNB解密后的报文的内容是否一致;
- 12) 通过系统进行下行PING包数据测试,eNB使用SNOW 3G算法进行加密,UE使用SNOW 3G算法进

行解密;

13) 对于PING包数据, eNB侧通过工具查看明文报文, UE侧通过工具查看解密后报文, 检测eNB 处的明文报文和UE解密后的报文的内容是否一致。

预期结果:

- 1) UE成功附着到网络:
- 2) UE发送的attach request消息,携带的UE网络能力中包含EEA1和EIA1;
- 3) eNB在AS Security Mode Command消息中选择EEA1和EIA1;
- 4) eNB对AS Security Mode Command消息进行完整性保护;
- 5) UE对AS Security Mode Command消息进行完整性检查通过;
- 6) UE使用EIA1/EEA1算法对AS Security Mode Complete消息进行完整性保护;
- 7) eNB对AS Security Mode Complete消息进行完整性检查通过;
- 8) 默认承载建立成功;
- 9) 用户EMM状态为EMM-REGISTERED;
- 10) 消息跟踪能够跟踪到相应的消息,流程正确;
- 11) 对于上行PING包数据,UE侧查看明文报文,eNB侧查看解密后报文,二者报文内容一致;
- 12) 对于下行PING包数据, eNB侧查看明文报文, UE侧查看解密后报文, 二者报文内容一致。

7. 2. 3 AES 算法

测试项目:加密和完整性保护算法

测试分项: AES算法

测试目的:验证UE支持AES算法。

预置条件:

- 1) EPS 网络中各网元系统及操作维护台运行正常;
- 2) UE, eNodeB, MME 支持 AES 算法功能;
- 3) 用户在 HSS 中已签约 EPS 业务;
- 4) eNode、MME 的操作维护台中 AES 算法优先级别最高;
- 5) MME 中没有该用户的信息:
- 6) 在 MME 上打开认证加密开关, 并配置用户附着过程中需要认证;
- 7) 在 UE 和 eNode、UE 和 MME 之间建立 LTE-uu/S1 接口跟踪。

测试步骤:

- 1) UE开机发起IMSI附着,是否附着成功;
- 3) 检查UE携带的UE Security Capabilities信元中是否包括EEA2和EIA2, 查看MME配置算法列表中是否包含有EIA2和EEA2算法;
- 4) eNB是否在AS Security Mode Command消息中包含EIA2/EEA2算法进行完整性保护。查看AS

Security Mode Command是否携带选择的EIA2/EEA2;

- 5) UE是否对AS Security Mode Command消息进行完整性检查通过;
- 6) UE是否使用EIA2/EEA2算法对AS Security Mode Complete消息进行完整性保护保护;
- 7) eNB是否使用EIA2/EEA2算法对AS Security Mode Complete消息进行完整性保护校验;
- 8) 查看默认承载是否建立成功;
- 9) 查看用户信息;过UE进行上行PING包数据测试,UE使用AES算法进行加密,eNB使用AES算法进行解密。对于PING包数据,UE侧通过工具查看明文报文,eNB侧通过工具查看解密后报文,检测UE处的明文和eNB解密后的报文的内容是否一致。
- 10) 通过系统进行下行PING包数据测试,eNB使用AES算法进行加密,UE使用AES算法进行解密。 对于PING包数据,eNB侧通过工具查看明文报文,UE侧通过工具查看解密后报文,检测eNB 处的明文报文和UE解密后的报文的内容是否一致。

预期结果:

- 1) UE成功附着到网络;
- 2) UE发送的attach request消息,携带的UE网络能力中包含EEA2和EIA2;
- 3) eNB在AS Security Mode Command消息中选择EEA2和EIA2;
- 4) eNB对AS Security Mode Command消息进行完整性保护;
- 5) UE对AS Security Mode Command消息进行完整性检查通过;
- 6) UE使用EIA2/EEA2算法对AS Security Mode Complete消息进行完整性保护;
- 7) eNB对AS Security Mode Complete消息进行完整性检查通过;
- 8) 默认承载建立成功;
- 9) 用户EMM状态为EMM-REGISTERED;
- 10) 消息跟踪能够跟踪到相应的消息,流程正确;
- 11) 对于上行PING包数据,UE侧查看明文报文,eNB侧查看解密后报文,二者报文内容一致;
- 12) 对于下行PING包数据, eNB侧查看明文报文, UE侧查看解密后报文, 二者报文内容一致。

7.3 切换时的安全性

7. 3. 1 S1 切换时的密钥协商

测试项目: 切换时的安全性

测试分项: S1切换时的密钥协商

测试目的: S1切换成功, 切换前后所选算法均符合预期

预置条件:

- 1) 网络侧所有设备运行正常;
- 2) UE 支持 ZUC、Snow 3G、AES 安全算法;
- 3) 网络侧配置打开空口安全能力(完整性保护及加解密);
- 4) RRU1 和 RRU2 下小区配置互为邻区;

- 5) MME 支持 ZUC、Snow 3G、AES 安全算法;
- 6) eNB 支持 ZUC、Snow 3G、AES 安全算法;
- 7) eNB1 和 eNB2 之间没有 X2 接口;
- 8) 可调衰减器 1 衰减调至最小;
- 9) 可调衰减器 2 衰减调至最大;
- 10) MME 配置安全算法为

完整性保护算法: ZUC

加解密保护算法: ZUC

11)源 eNB(eNB1)配置安全算法为

完整性保护算法: ZUC

加解密保护算法: ZUC

12) 目标 eNB (eNB2) 配置安全算法为

完整性保护算法: ZUC

加解密保护算法: ZUC

测试步骤:

- 1) UE开机,触发NAS SMC和AS SMC流程,并以1Mbits/s速度进行下行灌包;
- 2) UE在eNB1下入网成功, NAS SMC流程成功, AS SMC流程成功。NAS安全算法选择ZUC算法, AS 安全算法选择ZUC算法;
- 3) 调节衰减器1,2的衰减,触发UE从Enb1切换至eNB2,通过S1接口;
- 4) 源eNB应把UE安全能力以透明集合的形式通过切换请求消息经S1-AP发送至目标eNB;
- 5) 目标eNB指定算法应通过切换命令告知UE;
- 6) 在切换通知消息中,目标eNB应把来自源eNB的UE安全能力发送至MME;
- 7) UE进行S1切换成功,由eNB1切换至eNB2。切换后NAS安全算法选择ZUC算法,AS安全算法选择 ZUC算法。

预期结果:

- 1) 业务流程正确;
- 2) UE进行S1切换成功,由eNB1切换至eNB2,切换后AS算法为ZUC。

7. 3. 2 S1 切换时的密钥分发

测试项目: 切换时的安全性

测试分项: S1切换时的密钥分发

测试目的: 验证正确处理S1切换中密钥分发。

预置条件:

- 1) 网络侧所有设备运行正常;
- 2) UE 支持 ZUC、Snow 3G、AES 安全算法;

3) 网络侧配置打开空口安全能力(完整性保护及加解密);

- 4) RRU1 和 RRU2 下小区配置互为邻区;
- 5) MME 支持 ZUC、Snow 3G、AES 安全算法;
- 6) eNB 支持 ZUC、Snow 3G、AES 安全算法;
- 7) eNB1 和 eNB2 之间没有 X2 接口;
- 8) 可调衰减器 1 衰减调至最小;
- 9) 可调衰减器2衰减调至最大;
- 10) MME 配置安全算法为

完整性保护算法: ZUC

加解密保护算法: ZUC

11)源 eNB(eNB1)配置安全算法为

完整性保护算法: ZUC

加解密保护算法: ZUC

12) 目标 eNB (eNB2) 配置安全算法为

完整性保护算法: ZUC

加解密保护算法: ZUC

测试步骤:

- 1) UE在一个eNodeB覆盖区, eNodeB侧触发Handover流程;
- 2) MME在接收到HANDOVER REQUIRED消息后,应首先把本地存储的NCC按1递增,然后从其已存数据中计算并存储一个新的{NH, NCC}对;
- 3) 目标eNB在HO Command中将fresh 的NCC值发送给UE;
- 4) S1切换流程是否成功;
- 5) 数据业务是否正常。

预期结果:

- 1) Handover Request中Security Context中应包含新生成的{NCC, NH}对;
- 2) Handover流程成功;
- 3) 切换之后数据业务正常;
- 4) 消息跟踪能够跟踪到相应的消息,流程正确。